Load an entire file

.osfileEntryPoint

Code when loading from cassette

.starRunEntryPoint

N

.loadFile

y

.searchForFile

!

.checkFileAttributes

|

.loadOrRun

= searchForBlockCheckFilingSystem

~

Sequential access
(load individual bytes)

.searchForBlockReadHeaderAndCompare .osbgetEntryPoint
— > .readBlockHeader <& .bgetReadBlockAndHeader
@ Set readProgressState = 1
and prepare the ACIA for reading data. v
.readTapeBlockHeader
® wait in a tight loop
until the header is ready to be read, i.e.
(.readProgressState = 3). The ACIA
interrupt handles updating
.readProgressState.
v
@ read the bytes of the header ~ .startOfBlock
(first the variable length filename, \ K
then the rest of the header) by calling .readByteFromTapeOrROM
.readByteFromTapeOrROM
multiple times. Once the header is
read, set fsReadProgressState = 0.
.waitForByteToReadOr\Write
@ wait in a tight loop for byte to be read.
i.e. bit 7 to be set in
.fsGotACharacterToReadOrWriteFlag.
The ACIA Interrupt sets this flag.
v
.setLoadAddressAndLoadBlock
> JloadBlock <& |
i Interrupt received from
the ACIA indicating it has
.blockNumbersMatch read a byte from tape
i P e < .irqEntryPoint
/
waitForBlockToFinish / \l,
/
@ wait in a tight loop for / drq1Handler

fsReadProgressState to become zero. This happens == == o
when an interrupt from the ACIA is received.

Control returns to .loadOrRun (if this where we

entered from) to load the next block.

@ get the byte that has been
read from tape (ACIA register).

@ Update .fsReadProgressState as needed:

0 - done, exit.

1 - looking for carrier tone.

2 - found carrier tone, waiting for sync byte $2A.

3 - found sync byte $2A, now reading header.

4 - have read the header with non-zero block
data length, now reading actual block data.

5 - finished reading data in block; set state = 0.

<&—

.updateACIA

&

.updateACIATape

.postReadByte

