
.loadFile

.osfileEntryPoint .starRunEntryPoint

.searchForFile .searchForBlockCheckFilingSystem

.searchForBlockReadHeaderAndCompare

.bgetReadBlockAndHeader

.setLoadAddressAndLoadBlock

.readBlockHeader

.checkForROMBlockMarker

.startOfBlock

.readByteFromTapeOrROM

.waitForByteToReadOrWrite

.checkFileAttributes

.loadOrRun

.loadBlock

.blockNumbersMatch

.waitForBlockToFinish

.osbgetEntryPoint

.updateACIA

.postReadByte

Code when loading from ROMLoad an entire file

Sequential access
(load individual bytes)

⑤ wait in a tight loop for
fsReadProgressState to become zero. This happens
when we call .updateACIA.
Control returns to .loadOrRun (if this where we
entered from) to load the next block.

④ we ensure there's no waiting here,
since we don't need to wait for the ACIA
to deliver. (we have already set the top bit of
.fsGotACharacterToReadOrWriteFlag)

② read the bytes of the header
(first the variable length filename,
then the rest of the header) by calling
.readByteFromTapeOrROM
multiple times. Once the header is
read, set fsReadProgressState = 0.

③ read a byte from the ROM or PHROM

① checks for the synchronisation byte
which is different for the first block.
Increments the block number as needed.

⑥ read the byte from ROM or PHROM.

⑦ Update .fsReadProgressState as needed.
The state was initialised to 4 (in
.setStateForLoadingBlockDataOrReset). We
have read the header already, so states 1-3 are
not used here.
0 - done, exit.
1 - looking for carrier tone.
2 - found carrier tone, waiting for sync byte $2A.
3 - found sync byte $2A, now reading header.
4 - have read the header with non-zero block
data length, now reading actual block data.

5 - finished reading data in block; set state = 0.


